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Abstract  

Some algorithms have been derived to calculate the 
expected values of one-phase seminvariants of first 
rank in space groups up to orthorhombic by a 
probabilistic approach [Giacovazzo (1978). Acta 
Cryst. A34, 562-576]. The method has been tested on 
several known structures. The results show how the 
method can secure a very reliable estimate for a limited 
number of one-phase seminvariants which can be used 
from the initial stages of phase determination. In 
addition, the estimated values can be used as a good 
figure of merit to select the correct K2 solution in a 
multisolution procedure. 

1. Introduction 

A one-phase structure seminvariant is the phase, q~n, of 
a reflexion, the indices of which satisfy the condition H 
-- 0(rood ms) where co s is the seminvariant modulus of 
the given space group. According to representations 
theory (Giacovazzo, 1977), q~a is a structure semin- 
variant of first rank if there is at least one vector h (Eh 
may be measured or not) and a rotation matrix It, for 
which 

H = h D  n = h ( l -  Rn). (1) 

In (1), I denotes the identity matrix. 
Probabilistic theories for estimation of one-phase 

seminvariants of first rank have been supplied by 
various authors (e.g. Hauptman & Karle, 1953, 1957; 
Cochran & Woolfson, 1954, 1955; Naya, Nitta & 
Oda, 1964; Weeks & Hauptman, 1970; Hauptman, 
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1972; Giacovazzo, 1975). Unfortunately, K1 formulae 
for representative space groups only have been worked 
out; moreover, the frequence of failures suggested that 
one-phase seminvariants should not be used in the early 
stages of direct procedures. 

An alternative use of one-phase seminvariants has 
been suggested by Overbeek & Schenk (1976) who 
formulated a criterion, based on the K I relations, which 
can be used to select the correct K 2 solution in 
multisolution procedures. The criterion led, in some 
artificial monoclinic structures, to a successful predic- 
tion of the correct structure and proved by far superior 
to the negative-quartet criterion, most notably so in the 
case of large structures. However, Overbeek & Schenk 
(1976) made full use of the space-group symmetry for 
the Y~ criterion, while they applied to monoclinic 
structures the usual negative-quartet criterion as 
derived in the triclinic system. On the other hand, a 
recent paper by Busetta et aL (1980) shows that the 
effectiveness of the negative-quartet criteria strongly 
increases when full use of the space-group symmetry 
is made [see Giacovazzo (1976) for the theoretical 
background]. The results previously mentioned strong- 
ly suggest that K~ and negative-quartet criteria are 
two of the most effective figures of merit for selecting 
the correct solution from a large number of possible 
candidates often produced by multisolution techniques. 

More recently, the theory of representations has 
given new insights into probabilistic methods for 
obtaining accurate estimates of one-phase semin- 
variants of first rank (Giacovazzo, 1978a). The 
formulae yield an estimate for any seminvariant rpn via 
the magnitudes contained in the first and second 
representations of rpn. Since a large amount of 
information can be exploited, it is expected that 
one-phase seminvariants can be reliably estimated. In 
this paper we deal with practical aspects and appli- 
© 1980 International Union of Crystallography 
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cations of the theory described by Giacovazzo (1978a) 
(hereafter referred to as paper I), and with the new role 
that one-phase seminvariants can play in direct 
procedures. 

so that 

D p  

2 0 

0 2 

0 0 

0 

0 ,  

0 

D q  

2 0 0 

0 0 0 

0 0 2 

2. An algorithm for the estimation of one-phase semin- 
variants in space groups up to orthorhombic 

Let (Pn be a first-rank seminvariant. Because of (1), the 
first representation of ~ is the collection of the special 
triplets 

1~¢1 ---- (~I - -  (~h "{- (~hr n • 

The information contained in the first representation of 
will be fully exploited when all the h in (1) are 

known. Property 2 of paper I shows that the use of the 
generalized inverse matrices is the most general way to 
search for vectors h. Then, 

h = HD* + Z ( I -  D*Dn) , 

where D* is the generalized inverse of D,, and Z is a 
free vector in reciprocal space. When considering only 
the space groups up to orthorhombic, the calculation of 
the right-hand side of (3) is rather simple. In fact, any 
D,  = [d U] is a matrix for which d U = 0 for i :/:j. Then, 
D* = [d*] is a matrix for which d* 0 for i :/:j;  d~ = 0 tj = 
if dii = 0, otherwise d* = 1/d,. 

As an example, let us consider, in class 222, the 
seminvariant CpH = ~0400. The matrices for which (1) is 
satisfied are 

R p  ~- ,o0j 1,0 l 0 i 0 , R q =  0 1 , 

0 0 1 0 0 

If n = p, then (3) gives h = 20l; if n = q then (3) gives h 
= 2k0, where l and k are free indices. Assuming that 
the maximum values of the indices k and l are known 
(i.e. M A X K  and MAXL) ,  we are immediately able to 
construct the first representation of ~04o0: 

{ I//}1 = {(/7400 - -  ~/720 / -f- ~0]0 / } U {(if400 - -  ~2k0 "f" ~/7]k0}' 

(2) where 0 < l _< M A X L ,  0 < k _< M A X K .  The set of 
magnitudes IE4001 , IE20/I, IE2ko[ is called the first 
phasing shell of (P400. 

A computer program was written to generate the 
one-phase seminvariants of first rank in all the space 
groups up to orthorhombic and to define the magni- 
tudes in the first phasing shell as described above. As 
the whole reciprocal space is stored in the central core 

(3) of the computer, the search for the h vectors is very fast 
and does not require the previous search of the ~2 
relations as in systems such as MULTAN (Germain, 
Main & Woolfson, 1971). A further advantage of the 
algorithm is that the contribution of the small Ighl'S to 
the probabilistic estimation of (Pn can be considered too. 

Paper I gives also probabilistic formulae which 
estimate cpn via its second representation. We recall 
here that the second representation of ~0n is the 
collection of special quintets: 

I/'/2 = (~! - -  ~gh + ( P h R . -  (ffkR 1 + (ffkR/, j = 1 . . . .  , r (4) 

where h varies over the set of vectors defined in {~}~ 
and R,  over the subset of matrices which satisfy (1). 
According to (1.34) and (I.39), R i varies over the subset 
of r = m/2 matrices not related by the centre of 
symmetry when the space group is centrosymmetric (m 

Table 1. Abbreviations, references, space groups, chemical formulae (obs meaning E's computed from the 
observed intensities and calc E's calculated from the atomic coordinates) and minimum values for IEHI, IEhl 

and IEkl 

Space 
Reference group Formula Z E Eumln Ehml. E~,. 

TETRA Spagna & Vaciago (1978) P[ C3on32N 4 1 obs 1.50 1.50 1.80 
RIBO James & Stevens (1977) P21 C13H180 9 4 calc 1.70 1.30 1.83 
METHOX Hanson & Nordman (1975) P2~/c C~sH220 2 4 calc 1.68 1.30 1.80 
T O L Y  Brufani, Cellai, Cerrini, P212121 C37H43NO13 4 obs 1.70 1.30 1.85 

Fedeli & Vaciago (1978) 
TOXE Cerrini, Fedeli, Gavuzzo P2~2~2~ C2~H350 5 4 obs 1.57 1.50 1.90 

& Mazza (1975) 
KARLE Karle, Karle & Estlin P212~2 ~ C~2H~aNO 4 4 obs 1.40 1.30 1-50 

(1967) 
AZET Colens, Declercq, Germain, Pca21 C2~H~sC1NO 8 obs 1.35 1.50 1.65 

Putzeys & Van Meerssche 
(1974) 
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is the order of the space group), whereas r = m for a 
non-centrosymmetric space group, k is a free vector 
which sweeps over the asymmetric region of reciprocal 
space. 

For every h the program calculates indices and 
magnitudes of the basis and cross reflexions of the 
special quintets (4). The set of these magnitudes is 
called the second phasing shell of t/~i. 

The probabilistic method described in paper I was 
tested on seven known structures of different com- 
plexity covering five of the seven symmetry classes of 
the first three crystallographic systems in which 
one-phase seminvariants can be found. Table 1 shows 
the references and the most relevant features of the test 
structures whose results are discussed in this paper. 

With the aim of comparing the reliability of different 
probabilistic formulae, we constructed the following 
criterion in which use is made of all P+ values 
associated with the signs of the seminvariants: 

2 
ARI = - Z St A{, 

n t 

where ARI means 'averaged reliability index', n is the 
number of seminvariants considered in the calcu- 
lations, St is the true sign of the ith seminvariant and 
A + = P+ - 0.5. If all the seminvariants are correctly 
defined with the highest reliability, then Y t St A{ = n/2 
and ARI = 1. The worst situation occurs when all the 
seminvariants are incorrectly defined with the highest 
reliability; then ARI = - 1. 

3. The estimation of  tpu from its first representation: 
practical aspects 

Three types of formulae were given in paper I in order 
to estimate ~0n via its first representation: (I. 14), (I. 17) 
and (1.28). The first one holds in centrosymmetric as 
well as in non-centrosymmetric space groups, the 
second was specifically derived in centrosymmetric 
space groups and the third for centrosymmetric semin- 
variants in non-centrosymmetric space groups. More- 
over, (I.14) arises from the Gram-Charlier expansion 
of the characteristic function of the joint probability 
distribution of the E's  in the first phasing shell, while 
(I. 17) and (1.28) are directly obtained from the Fourier 
transform of the characteristic function. In agreement 
with theoretical expectation, (I.14), (I.17) and (1.28) 
give nearly identical results for all space groups. 
Formula (1.14) can thus be chosen for subsequent use 
also because it coincides with the classical Y l relation- 
ship, currently used to estimate one-phase semin- 
variants in direct procedures for phase solution (e.g. in 
MUL TAN). 

A more interesting test is that of comparing the 
reliability of the formulae when the following con- 
ditions are used. 

(a) Only the largest I Ehl values are used. In usual 
direct procedures only I El ' s  larger than a fixed 
threshold are introduced for the search of •2 relation- 
ships. Depending on the structural complexity, on the 
symmetry class and on the particular structure, the 
value of this threshold can vary between about 1.30 
and 1.70. This value fixes also the minimum magni- 
tudes for the Eh'S which can be phased and for the 

Table 2. AZET:  indices and E's of  the one-phase 
seminvariants of  first rank together with the corre- 

sponding probabilities 

P+(E) P+(E) P+(E) P+(E) 
h k l E (I.14) + (I.14) (I.17) (I.28) 

0 4 0 3.46 1.00 1.00 1.00 1.00 
8 2 0 --2.78 0.50 0.34 0.33 0.34 
0 6 0 - 2 . 6 7  0.0 0.0 0.01 0.01 

12 2 0 --2.36 0.44 0.35 0.35 0.35 
8 4 0 2.31 0.69 0.80 0.81 0.80 

28 4 0 2.20 0.50 0.42* 0.42* 0.42* 
22 6 0 1.71 0.68 0.67 0.67 0.67 
24 6 0 1.61 0.50 0.48* 0.48* 0.48* 
30 2 0 --1.56 0.40 0.33 0.33 0.33 
14 0 0 --1.56 0.21 0.12 0.11 0.11 
30 0 0 1.55 0.73 0.90 0.90 0.90 
12 6 0 --1.45 0.56* 0.58* 0.58* 0.58* 
24 4 0 1.39 0.64 0.66 0.66 0.66 

0 8 0 1.38 0.97 0.98 0.97 0.97 

* Incorrect evaluations. 

Table 3. KARLE: indices and E's of  the one-phase 
serninvariants of  first rank together with the corre- 

sponding probabilities 

P+(E) P+(E) P+(E) P+(E) 
h k l E (1.14) + (1.14) (I.17) (I.28) 

4 2 0 --2.54 0.17 0.04 0.03 0.04 
0 0 12 --2.42 0.50 0.44 0.44 0.44 
0 4 8 2.22 0.50 0.65 0.67 0.66 
0 2 8 -2 .05  0.50 0.69* 0.70* 0.70* 
0 4 14 1.95 0.79 0.82 0.83 0.82 
4 0 4 - 1 . 8 7  0.50 0.47 0.47 0.47 
0 6 18 -1 .82  0.31 0.24 0.23 0.23 
4 0 0 1.81 0.50 0.71 0.72 0.71 
0 6 16 1.76 0.50 0.54 0.54 0.54 
4 0 12 -1 .53  0.37 0.36 0.35 0.36 
0 4 4 -1 .51  0.51" 0.51" 0.51" 0.51" 
0 4 12 - 1 . 4 6  0.39 0.27 0.27 0.27 

* Incorrect evaluations. 

Table 4. The values o fARI for  (I. 14) + and (I. 14) 

(I.14) + (I.14) 

TETRA 0.03 0.05 
RIBO 0.15 0.20 
METHOX 0.05 0.07 
TOLY 0.12 0.23 
TOXE 0.27 0.37 
KARLE 0.17 0.28 
AZET 0.38 0.41 



576 A P P L I C A T I O N S  OF SOME PROBABILISTIC F O R M U L A E  

IEhI'S which can be exploited. The threshold values 
used for our tests are given in Table 1 and are labelled 
as EHmtn. 

(b) All the I Ehl'S contained in the first phasing shell 
of tpn are used. 

In Tables 2 and 3 the results are described in some 
detail for A Z E T  and K A R L E  respectively. The 
asterisks indicate incorrect evaluations. The values of 
~ R I  for the seven test structure are shown in Table 4. 
~¢e have labelled in the tables by (1.14) + the results 
obtained by (1.14) when only the IEhl's larger than 
EHmin are used. 

The results suggest that, when possible, information 
contained in small I Ehl reflexions should not be 
neglected. In particular, seminvariants which are 
estimated positive when only the largest I Ehl'S are used 
can become negative if all the I Ehl's are used, and vice 
versa. Moreover, it is worth noticing that the ARI 
values are always better for (I. 14) than for (I. 14) +. 

A first conclusion may be that computer-based 
procedures which store the whole reciprocal space are 
in principle more able to exploit information contained 
in diffraction data. On the other hand, only those pro- 
cedures can estimate one-phase seminvariants via their 
second representations. 

4. The estimation of  ~PH from its second 
representation: practical aspects 

Two types of procedure were described in paper I to 
estimate tpa via the magnitudes contained in its second 
phasing shell. The first uses the joint probability 
distribution of the complete set of E 's  belonging to the 
second phasing shell of q~n and leads to (I.36). 

The second procedure uses the idea of comple- 
mentary invariants described in general terms by 
Giacovazzo (1977). The complementary quartet 
invariants 

¢P4 = q~n-- qh--  ~ + q~R.+ k 

are estimated via their first representations. If k is 
allowed to vary over the region of reciprocal space for 
which I EhR. Ek EhR. + k l is large, then ~0 a = q~a. + ~ -- 
q~a. + k can be assumed to be nearly zero. Since ~ a .  = 
¢Ph -- 2nhTn, then ¢P4 -~ q~ -- 2nhTn, from which q~n is 
fixed if ~04 is correctly estimated. The usefulness of the 
method is increased by the fact that several reliable 
quartets can be found for a given On. 

Expression (I.44) gives the probability that E n is 
positive when the first representation of the j t h  
complementary quartet is used. A measure of the 
overall probability that E n has a positive sign when 
more complementary quartets are used is given by 

P+ ~_ 1 + rIj P? (5) 

A series expansion of (5) leads to 

0 
~- +v,  ~ 

YAh, k \ ]/ 
× _~___ _l(_l)~h~ol~ 

1 + ~k nh'kJ J )  
, (6)* 

where the symbols have the same meaning as in paper 
I. 

The calculation of (I.36), (1.44) and (I.45) are time 
consuming if k sweeps over all reciprocal space. In our 
tests, k is restricted to range over the subset of 
reflexions with E k _> Ekmin. The chosen values of Etani n 
for the various structures are shown in the last column 
of Table 1. They were arbitrarily fixed depending on the 
structure complexity and the symmetry class. 

Some other measurements were taken in order to 
improve the estimation process. For (I.36), the use of 
Hermite polynomials of order four proved not to be 
essential; so they were not used in the calculations. On 
the other hand, in accordance with §1.8, precautions 
were taken to avoid duplications of contributions 
arising when k swept over the subset of largest Ek's. 
This condition proved essential in order to obtain good 
estimates of the seminvariants. As regards (1.44) and 
(I.45), those quartets which, singly considered, 
estimated q~n with a reliability smaller than a threshold 
value (i.e. 0.35 < P+ < 0.80) were excluded from the 
calculations. In this way, q~n was not determined from 
too unreliable quartets. However, in some cases no 
quartet with the required qualifications were available 
for a given ~ .  

In order to reduce the number of these cases the 
threshold for I Ehl can be suitably lowered. In Table 1 
the chosen values of the threshold for the various 
structures are shown in the column labelled Ehmin. In 
spite of these precautions, for a given Eh no quartet 
may, on occasion, be available. Then in (1.44) and 
(I.45) only the contribution arising from the Y~ 
relationship and corresponding to that I Ehl is used. 

In Tables 5 and 6 the results of our calculations are 
described in some detail for A Z E T  and K A R L E  
respectively. The column labelled NQ gives the number 
of quartets used in (1.44) and (1.45). As in Tables 2 and 
3, the asterisks indicate incorrect evaluations. The 
values of ARI for the test structures are shown in 
Table 7. 

The following conclusions can be drawn. 
(a) The estimates of one-phase seminvariants via the 

second representation are in general considerably more 

* Equation (6) is the correct form of equation (I.45) which was 
wrongly reported in paper I. 
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Table 5. AZET: indices and E's of the one-phase 
seminvariants of first rank together with the corre- 

sponding probabilities 

The seminvariants are arranged in descending order of expected 
accuracy according to (1.36). 

P+(E) t,+(e) P+(E) e+(e) 
h k I E (I.14) (1.36)  (1.44)  (1.45)  NQ 

0 6 0 -2 .67  0.00 0.00 0.00 0.00 156 
0 4 0 3.46 1.00 1.00 1.00 1.00 115 
0 8 0 1.38 0.98 1.00 1.00 0.99 13 

14 0 0 -1 .56  0.12 0.00 0.00 0.00 45 
30 0 0 1.55 0.90 0.98 0.90 0.92 4 

8 4 0 2.31 0.80 0.93 0.97 0.95 3 
24 4 0 1.39 0.66 0.91 0.66 0.66 0 
22 6 0 1.71 0.67 0.85 0.89 0.88 2 
30 2 0 -1 .56  0.33 0.18 0.18 0.16 4 
12 2 0 -2 .36  0.35 0.26 0.35 0.35 0 
8 2 0 -2 .78  0.34 0.33 0.34 0.34 0 

28 4 0 2.20 0.42* 0.60 0.42* 0.42* 0 
12 6 0 -1 .45  0.58* 0.42 0.58* 0.58* 0 
24 6 0 1.61 0.48* 0.43* 0.48* 0.48* 0 

* Incorrect evaluations. 

Table 6. KARLE: indices and E's of the one-phase 
seminvariants of  first rank together with the corre- 

sponding probabilities 

The seminvariants are arranged in descending order of expected 
accuracy according to (1.36). 

P÷(e) e+(E) e+(E) e+(e) 
h k 1 E (1.14) (1 .36)  (1.44)  (1.45)  NQ 

0 4 14 1.95 0.82 0.99 0.94 0.95 1 
4 2 0 -2 .54  0.04 0.01 0.00 0.00 55 
4 0 12 -1 .53 0.36 0.07 0.09 0.08 4 
0 4 12 -1 .46  0.27 0.09 0.22 0.21 1 
4 0 0 1.81 0.71 0.91 0.71 0.71 0 
0 4 4 -1 .51 0.51" 0.11 0.22 0.19 3 
0 6 18 -1 .82  0.24 0.23 0.24 0.24 0 
0 2 8 -2 .05 0.69* 0.68* 0.69* 0.69* 0 
4 0 4 -1 .87  0.47 0.39 0.47 0.47 0 
0 4 8 2.22 0.65 0.60 0.65 0.65 0 
0 6 16 1.76 0.54 0.59 0.54 0.54 0 
0 0 12 -2 .42  0.44 0.44 0.44 0.44 0 

* Incorrect evaluations. 

Table 7. The values of ARIfor  (I. 14), (I.36), (I.44) and 
(1.45) 

(I. 14) (1.36) (1.44) (1.45) 

TETRA 0.05 0.07 0.06 0.12 
RIBO 0.20 0.41 0.43 0.41 
METHOX 0.07 0.17 0.12 0.12 
TOLY 0.23 0.30 0.45 0.45 
TOXE 0.37 0.52 0.49 0.47 
KARLE 0.28 0.51 0.41 0.42 
AZET 0.41 0.64 0-55 0.56 

accurate than the corresponding estimates via the first 
representation. For example, in Table 5, (o28,4,0 and 
~0~2,6,0 are wrongly estimated by the ~ relationship 
while they are correctly estimated via their second 
representations. Furthermore, in Table 6, (Oo44 was 
erroneously estimated as 2zc with very small reliability 
by the ~ relationship while its value is correctly 
indicated to be zc with high probability by the second 
representation. Similar cases can be found for the other 
structures tested in this paper, e.g. in RIBO the phase 
~020 ~ is wrongly estimated as z~ by the ~1 relationship 
with sign probability P+ = 0.30 (the second value in 
order of reliability) and is correctly estimated as 2z~ by 
the second representation (P+ = 0.52). In the same 
structure q~s,0,i6 is wrongly estimated as 7r (P+ = 0.47) 
by the Y.~ relationship while it is correctly estimated as 
2re by the second representation (P+ = 0.86). 

(b) The number of seminvariants estimated with 
high probability value is larger than that of the older )-'1 
estimate. As a rule, phases associated with high 
probability are correctly estimated. In some cases the 
estimates are so reliable that one-phase seminvariants 
can be used in an active way from the first stages of the 
direct procedure. The availability of some reliably 
estimated one-phase seminvariants at the beginning of a 
multisolution procedure speeds up the phase-deter- 
mination process. Furthermore, the need to introduce 
a large number of variable phases in the starting set is 
reduced, and consequently it reduces the number of 
trial sets of phases to be investigated to find the correct 
solution. 

(c) The ARI values corresponding to (I.36), (1.44) 
and (I.45) are always higher than those corresponding 
to (I. 14). This is not a mathematical result only, but has 
also a physical meaning because in our tests the second 
representation shows a strong tendency to correct the 
wrong estimates of the Y,1 relationships. Thus the use of 
ARI for selecting the correct )-'2 solution when the 
one-phase seminvariants are calculated via the second 
representation, seems able to improve analogous 
criteria based on ~ relationships. 

(d) Table 7 clearly shows for TETRA the negligible 
improvement in phase estimation of the second 
representation with respect to the first one. Further 
tests on other P1 structures [C3oH37NO5, Z = 2 
(Shakked & Kennard, 1977); C18H12NsO6, Z = 4 
(Kiers, de Boer, Olthof & Spek, 1976) show a similar 
trend. A careful examination of our results leads us to 
conclude that, as for the first, the use of the second 
representation seems the more effective the more the 
symmetry increases. This seems to hold for the method 
of complementary invariants too. 

(e) The computer-time requirement for estimating 
useful seminvariant phases via their second represent- 
ation is quite modest: typical times are 20-30 s per 
structure by an IBM 370/158. Relations (1.44) or (1.45) 
are less time consuming; however, their use is not 
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recommended in practice. In fact, unlike represent- 
ation, the complementary invariant method is too 
sensitive to changes in the parameters Ehmln , Ekmin , etc. 
If the values of these parameters are too high, no 
quartet may, on occasion, be available for a given ~-t; if 
they are too low, too many unreliable quartets may be 
calculated with waste of computer time. 

It is anticipated that the estimation of one-phase 
structure seminvariants via the second representation 
will play an important role in a new procedure which 
exploits also the information contained in the two- 
phase structure seminvariants (Burla, Giacovazzo, 
Nunzi & Polidori, 1980). It is expected that a similar 
role may be played by a procedure using the three- 
phase structure seminvariants as well (Giacovazzo, 
1978b, Hauptman & Potter, 1979). 
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Abstract 

A simple test based on intensity statistics is presented 
for the detection of twinning by merohedry. Using 
relationships derived in the text, the twinning fraction of 
a crystal may be estimated from the intensity pro- 
bability distribution. Unlike most methods for the 
detection of twinning, application of this test does not 
require knowledge of the twinning operation. Two 
possible mechanisms for increasing the apparent 
diffraction symmetry of a crystal, twinning by 
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merohedry and crystal disorder, may be distinguished 
in certain cases by these procedures. 

Crystals twinned by merohedry present special prob- 
lems in X-ray crystal-structure determinations since the 
reciprocal lattices of the twins have identical orien- 
tations (Buerger, 1960). This class of twinning may 
occur in space groups of tetragonal or higher symmetry 
whenever the point symmetry of the crystal is lower 
than that of the lattice (Catti & Ferraris, 1976). Since 
the twinning operation exactly superimposes non- 
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